Estimating Density and Dispersion from Truncated or Unrestricted Joint Point - Distance Nearest - Neighbour Distances

نویسنده

  • C. L. BATCHELER
چکیده

Forty computer.simulated populations were analysed to derive fonnulae for estimating den.5ity of populations from a set of distances from sample points to the nearest member, from that member to its neighbour and from that neighbour to its nearest neighbour. Distances may be truncated or unlimited. The formulae were applied to data from 11 paper.dot and 18 field populations in a total of 37 experiments. Fifty.nine percent of the corrected estimates were within 10 percent of "true density", 76 percent were within 20 percent, and 93 percent were within 30 percent. Most of the unacceptable estimates were attributable to sampling difficulties (particularly in pap:::r dot popul<>.tion3) er sampling errOr3 of the "true density" values. An index of mn.randcmncss is an intrinsic part of the density estimating fonnula. This index is described, and values fer the experimental data are given to illustrate the spectrum which can be expected in biological populations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تأثیر الگوی پراکنش درختان بر برآورد تراکم با روش نمونه برداری نزدیک‌ترین فرد: مطالعات موردی در درختزارهای بنه زاگرس و توده‌های شبیه سازی شده

Distance methods and their estimators of density may have biased measurements unless the studied stand of trees has a random spatial pattern. This study aimed at assessing the effect of spatial arrangement of wild pistachio trees on the results of density estimation by using the nearest individual sampling method in Zagros woodlands, Iran, and applying a correction factor based on the spatial p...

متن کامل

Nearest Neighbour Distance Matrix Classification

A distance based classification is one of the popular methods for classifying instances using a point-to-point distance based on the nearest neighbour or k-NEAREST NEIGHBOUR (k-NN). The representation of distance measure can be one of the various measures available (e.g. Euclidean distance, Manhattan distance, Mahalanobis distance or other specific distance measures). In this paper, we propose ...

متن کامل

An Approximation for the Kth Nearest Distance and Its Application to Locational Analysis

In this paper, we provide a simple approximation for the distance from an arbitrary location to the kth nearest point. Distance is measured as the Euclidean and the rectilinear distances on a continuous plane. The approximation demonstrates that the kth nearest distance is proportional to the square root of k and inversely proportional to the square root of the density of points. The accuracy o...

متن کامل

بررسی صحت روش های نمونه برداری فاصله ای در برآورد تراکم گونه قره قاج (Anagyris foetida L.) (مطالعه موردی: جنگل های کاسه کران گیلان غرب)

The nearest individual method (NIM), Nearest neighbor method (NNM) and compound method (CM) are distance sampling methods that are being applied to measure the plant density (numbers of individuals per unit area). Density is one of the essential structural characteristics in forest stands and useful to understand the dynamics of the forest. The present study aimed to find the most adaptable dis...

متن کامل

An efficient approximation-elimination algorithm for fast nearest-neighbour search based on a spherical distance coordinate formulation

Ramasubramanian, V. and K.K. Paliwal, An efficient approximation-elimination algorithm for fast nearest-neighbour search based on a spherical distance coordinate formulation, Pattern Recognition Letters 13 (1992) 471-480. An efficient approximation-elimination search algorithm for fast nearest-neighbour search is proposed based on a spherical distance coordinate formuTation, where a vector in K...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004